622 research outputs found

    Tachoastrometry: astrometry with radial velocities

    Get PDF
    Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 \ms, which corresponds to a separation between the two components at the time of the observations of 18 ±2\pm2 milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record pairs of spectra rotated by 180 degrees, thus reducing systematic effects. We compute and provide the function expressing the shift of the centroid of a seeing-limited image in the presence of a narrow slit.The proposed technique is simple to use and our test shows that it is amenable for deriving astrometry with milli-arcsecond accuracy or better, beyond the diffraction limit of the telescope. The technique can be further improved by using simple devices to simultaneously record the spectra with 180 degrees angles.With tachoastrometry, radial velocities and astrometric positions can be measured simultaneously for many double line system binaries in an easy way. The method is not limited to binary stars, but can be applied to any astrophysical configuration in which spectral lines are generated by separate (non-rotational symmetric) regions.Comment: Accepted for publication in A&

    Wavelets: a powerful tool for studying rotation, activity, and pulsation in Kepler and CoRoT stellar light curves

    Full text link
    Aims. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. Methods. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Results. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern signature in the local wavelet map of pulsating stars over the entire time span was also detected.Comment: Accepted for publication on A&

    The WFCAM Multi-wavelength Variable Star Catalog

    Full text link
    Stellar variability in the near-infrared (NIR) remains largely unexplored. The exploitation of public science archives with data-mining methods offers a perspective for the time-domain exploration of the NIR sky. We perform a comprehensive search for stellar variability using the optical-NIR multi-band photometric data in the public Calibration Database of the WFCAM Science Archive (WSA), with the aim of contributing to the general census of variable stars, and to extend the current scarce inventory of accurate NIR light curves for a number of variable star classes. We introduce new variability indices designed for multi-band data with correlated sampling, and apply them for pre-selecting variable star candidates, i.e., light curves that are dominated by correlated variations, from noise-dominated ones. Pre-selection criteria are established by robust numerical tests for evaluating the response of variability indices to colored noise characteristic to the data. We find 275 periodic variable stars and an additional 44 objects with suspected variability with uncertain periods or apparently aperiodic variation. Only 44 of these objects had been previously known, including 11 RR~Lyrae stars in the outskirts of the globular cluster M3 (NGC~5272). We provide a preliminary classification of the new variable stars that have well-measured light curves, but the variability types of a large number of objects remain ambiguous. We classify most of the new variables as contact binary stars, but we also find several pulsating stars, among which 34 are probably new field RR~Lyrae and 3 are likely Cepheids. We also identify 32 highly reddened variable objects close to previously known dark nebulae, suggesting that these are embedded young stellar objects. We publish our results and all light-curve data as the WFCAM Variable Star Catalog.Comment: 21 pages, 11 figure

    Stellar parameters for stars of the CoRoT exoplanet field

    Full text link
    Aims:To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in the fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Method: Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard analysis techniques, we computed physical and chemical parameters (TeffT_{\rm{eff}}, log(g)\log \,(g), [Fe/H]\rm{[Fe/H]}, vmicv_{\rm{mic}}, vradv_{\rm{rad}}, vsin(i)v \sin \,(i), and A(Li)A(\rm{Li})) for a large sample of CoRoT targets. Results: We provide physical and chemical parameters for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in our sample are located in different evolutionary stages, ranging from the main sequence to the red giant branch, and range in spectral type from F to K. The physical and chemical properties for the stellar sample are in agreement with typical values reported for FGK stars. However, we report three stars presenting abnormal lithium behavior in the CoRoT fields. These parameters allow us to properly characterize the intrinsic properties of the stars in these fields. Our results reveal important differences in the distributions of metallicity, TeffT_{\rm eff}, and evolutionary status for stars belonging to different CoRoT fields, in agreement with results obtained independently from ground-based photometric surveys. Conclusions: Our spectroscopic catalog, by providing much-needed spectroscopic information for a large sample of CoRoT targets, will be of key importance for the successful accomplishment of several different programs related to the CoRoT mission, thus it will help further boost the scientific return associated with this space mission.Comment: 43 pages, 17 figures, accepted for publication in A&

    Yeasts as a model for assessing the toxicity of the fungicides Penconazol, Cymoxanil and Dichlofluanid

    Get PDF
    In the present work the sensitivity of yeast strains of Kluyveromyces marxianus, Pichia anomala, Candida utilis, Schizosaccharomyces pombe and Saccharomyces cerevisiae, to the fungicides cymoxanil, penconazol, and dichlofluanid, was evaluated. Dichlofluanid induced the most negative effects, whereas penconazol in general was not very toxic. Overall, our results show that the parameters IC50 for specific respiration rates of C. utilis and S. cerevisiae and CD for cell viability of S. cerevisiae can be applied to quantify the toxicity level of the above compounds in yeast. Hence, could be explored as an alternative or at least as a complementary test in toxicity studies and, therefore, its potential for inclusion in a tier testing toxicity test battery merits further research.http://www.sciencedirect.com/science/article/B6V74-40PXN3P-K/1/4f1eeec82c0a8b9702653d95b1ed431

    Effect of short-term practice of breathing exercises on the breathing capacity in school-age girls

    Get PDF
    Background: The breathing mechanism has existed since our birth and accompanies us throughout life. Breathing is an important function in the regulatory process of numerous body functions, its optimization can bring many health benefits. However, many children are unaware of the mechanisms of breathing, namely abdominal or diaphragmatic breathing, and in addition to this, many breathe normally through their mouths. Methods: The present study aimed to verify the influence of a short-Term breathing exercise program in school-Age girls breathing capacity. Fourteen female students aged between 8 and 10 years were selected, from this selection two groups were formed, the control group (CG) with 7 children and the experimental group (EG) with 7. Through a spirometric test, an assessment of breathing capacity (ABC) was carried out for both groups. The GE participated in a program of breathing exercises (BEP) lasting 15 to 20 minutes for 5 weeks. Then, the ABC was performed again for both groups. Discussion: The results demonstrate a significant increase in the values (p 0.01) of the forced vital capacity (FVC) of the EG, thus suggesting that the application of a BEP promotes the breathing capacity of school-Aged girls. Further studies should be performed with larger samples and with a longer protocol.info:eu-repo/semantics/publishedVersio
    corecore